Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging.
نویسندگان
چکیده
Semiconductor quantum dots are tiny light-emitting nanocrystals (2-10 nm) that have captivated researchers in the biomedical field in the last decade. Compared to organic dyes and fluorescent proteins, quantum dots (QDs) have unique optical properties such as tunable emission spectra, improved brightness, superior photostability, and simultaneous excitation of multiple fluorescence colors. Since the first successful reports on biological use of QDs a decade ago, QDs and their bioconjugates have been successfully applied in various imaging applications including fixed cell labeling, imaging of live cell dynamics, in situ tissue profiling, fluorescence detection, sensing and in vivo animal imaging. In this review, we will cover the optical properties of QDs, the biofunctionization strategies, their in vitro diagnostic applications and in vivo imaging applications. In addition, we will discuss the making of a new class of QDs--the self-illuminating QDs and their in vivo imaging and sensing applications. We will conclude with the issues and perspectives on QDs as in vivo imaging probes.
منابع مشابه
Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo.
The use of highly specific and highly sensitive immunofluorescent probes is a promising approach for biomedical imaging in living tissue. We focus on immunofluorescence with quantum dot bioconjugates for hepatoma detection in vivo. We synthesized specific immunofluorescent probes by linking quantum dots to AFP (alpha-fetoprotein) antibody for specific binding AFP-an important marker for hepatoc...
متن کاملLead sulfide near-infrared quantum dot bioconjugates for targeted molecular imaging
In this paper, we report the use of lead sulfide quantum dot (PbS QD) bioconjugates as near infrared (NIR) contrast agents for targeted molecular imaging with expanded emission wavelengths beyond 1000 nm. The red-shifted emission band, coupled with the small particle size, which will facilitate clearance, both afford PbS QDs unique properties for noninvasive, high resolution in vivo NIR imaging...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملIn vivo effects of quantum dot on organs development before maturity
Objective(s): The field of nanotechnology is rapidly expanding .The development quantum dots quantum dot (QDs), show great promise for treatment and diagnosis of cancer and targeted drug delivery little data on the toxicity of QDs, especially for in vivo applications, are available. As a result, concerns exist over their toxicity for in vivo applications. Then, cytotoxic effects of cadmium sel...
متن کاملQuantum dot bioconjugates for imaging, labelling and sensing.
One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer biomarkers : section A of Disease markers
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2008